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Abstract

Consider an observed stochastic process consisting of a signal with
additive noise. Assume that the signal has finite energy and that the signal
and noise are independent. In this paper we show, that under the above assump-
tions the innovations and observations o-~algebra are equal thereby proving a

long-standing conjecture of Kailath.
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Introduction.

Let (Q,F,P) be a complete probability space, F = (F,), 0<t <1, 8
non-decreasing family of sub-g-algebras and W==(W£,Ft), 0‘§ t< 1, a Wiener
process. With a signal process, B = (Bt’Ft)’ and

t

(1) y, = foss““"t

as observations, the innovations problem is to determine whether y = (yt,Ft) is

adapted to the innovations process, (v,FI). This process, whenever it exists

(see, for example, [1]), is a Wiener process defined by the equation

(2) 2 Y -j: B ds

where ﬁt = E(Btlys’ 0 < s <t). The innovations problem, first posed by Kailath

in 1967 and subsequently considered by Frost in his thesis [2] can be posed in

probabilistic terms; namely, are the o-algebras generated by these processes the

same modulo null sets; i.e. is

oly :

g s<tl = olv, s <t} (mod P)?

In this paper, we show that in the form conjectured by Kailath [3] this problem
has a positive solution. Our assumptions are that

(a) Signal and noise processes are independent

and 1
(v) ([ 8%as) < .
0o 8
Our results generalise all known results on the innovations problem
([(41, (3]). In [%] the signal process is assumed to be uniformly bounded. The

proof given in [2] is incorrect (see [3]). This problem has also been considered

v
by Benes [5] and Kallianpur [6] under slightly wesker hypotheses than ours. Their
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proofs however appear to be incorrect. We have been informed that results

similar to ours have been independently obtained by J.M.C. Clark and M,P. Ershov.
The problem considered here is a subclass of the more general innovations
problem for stochastic differential equations ([ 7 ] Page 260). In this more
general form, the innovations problem does not have (in general) a positive solu-
tion. A counter-example was given by Cirelson ([ 7], Page 150). In Cirelson's
example no "filtering" takes place and thus it cannot be considered to be a
counter-example to the innovations problem for non-linear filtering. Cirelson's
example however can be modified to obtain examples where filtering does occur
(cf. Benes [8]). The proof presented in this paper utilizes the independence
of the signal and noise processes in an essential way. Nevertheless we feel that

the assumption of independence can be removed for a wide class of signal processes.

1. The Innovations Result under (a), (b).
Our proof consists of two parts: deriving a jointly measurable functional,

v(s,x),
vy: [0,1] x c[0,1] » R

with the property that
v(s, B(w)) = Bs(w) A x P - a.s.
(A denotes Lebesgue measure on [0,1]), and then showing that any weak solution

of the stochastic differential equation
(1) ag, = yv(t,E)at + dv,

is pathwise unique in the sense of Yamada and Watanabe [9]. It is a consequence
of their work that (L4) has a strong solution (in the sense of Ito) i.e. the obser-
vations are a functional of the innovations.

Under (a), (b), we may apply the results of Kallianpur and Striebel [10] to

show that for 0 < t <1,
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Ja 8, et f, 8 (Gray (w2 [, B(@ras)ap()
(5) Bt(w) = f "¢ 0 s 8 0 s —© a.s.

t A t 5. A
Ja et 8 @y (w)af "62(d)as)aP(a)

Replacing ¥g by xg for x € C [0,1], we arrive at y(t,x). The joint measurability
of v(t,x) rests upon the measurability in (t,0,x) of the functional, (or

stochastic integral),

t ~
[, B,(@ax, = < DB (w),x >,

vhich represents a Gaussian random variable with respect to Wiener measure
on €[0,t] whenever B(w) is in L2[O,t], for t < 1. The operator, D, is unitary
from L2[0,l] onto C', the Hilbert Space of continuous function with square in-

tegrable derivatives, and
8
Df(s) = fo £(r)dr.

(Further discussion is given by Kuo [11].)

Our hypotheses (a), (b) guarantee that theinnovations{vt}can be constructed
[1] and so, (4) is satisfied by the observations, To show that any weak solution

to (4) is pathwise unique, we will need the following lemmas.

Lemma 1. Let
p(t,x,0) =exp([ ) B (B)ax, - % [¢ 8 2(d)as)
and

g(t,x) = f ap(t.x,a) dPa).

Then

(a) W, {x: q;;g; glt,x) <=} = 1




). and

. é (®) n, {x: inf g(t,x) > 0} =1,
1 0<t<1

where U, is Wiener measure on clo,1].

Proof: Recall that

~ 1 A, A
Plo: fo s§ D(Das < =} = 1,

TRy

‘fq and for each such w, the process

pRs

{o(t,W(w),6), Fi}

is a (right) continuous martingale. Consequently, {g(t,W(m)),Fz} is a right
continuous martingale. For let A(W) be a bounded F:-measurable random variable,
8 < t.

Then

'. Ep[A(w) - g(t,W)]

fc A(x) glt,x) ap(x)

fﬁ [ICA(X)p(t,x,&) au(x)] aP(»)

fﬁ [[C}‘(x)p(aﬁxsa) duw(x)] dP((T))

.

je Ax) g(s,x) duw(x),

from which we obtain

N SRS M AR .

Eda(t,W)|Fe) = g(s,W) - wa.s.

Moreover, since the family of sub-o-algebra, {F:; 0<s f_l} is continuous, and




EP(S(t,W)) =1, 0<t<1,

it follows that {g(t,w), F:} has a right continuous version [Thm. 3.1, 7].

Thus, we conclude that

Plw: sup g(t,Wlw)) < o} =1
0<t<1

- ws

Ry

. since Plw: sup g(t,W(w)) > A} < 1/A
. 0<t<1

R for A > 0. This gives (a).
dan
For (b), note that g(t,x) is the Radon-Nikodym derivative, Eﬁl (t,x)
Dy

where uy is the measure induced on C[0,1] by the observations process, y.

-t

AR Since uy'\a Yy» the proof is analogous to Lemma 6.5 (71.

] Lemma 2. Let

a(tax) = [, (f 6 Basole,nd) ap(h).
0

B Then
5’ Wy {x: sup a(t,x) <=} =1.
‘ 0_<_'t_<_l

(‘ Proof: The process
{alt,wlw)), F:-,I} is a right continuous martingale and for 0<t<1,

1
Eplals, i) =[5 ([, B(bras) ap(d).
4] Lemma 3. Let

lal 2 ~ ~n
n(t,x) = [q (B (@] p(t,x,0) aP(w).
Then

Yy

{x: jl m(t,x)dt < »} =1 .
0

13 e T, A o gl SO T
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‘ 1
< £ and .[o m(t, Ei(w)ldt < ® -w a.s.

Proof: Observe that

1 l ~ 2 A .
(t,W(w))at] aP(w) = [ [.]B, (w) dP(w))at < e, j
‘[ﬁ [fo " ? ¢ fo fnltm | 1

We return to the problem of comparing two weak solutions Eo, El of (k4),
assuming that 50’ El are both defined on the space (R,F,P). Moreover, we may
assume that ugo, ugl are each absolutely continuous with respect to Wiener measure.
The proof of Proposition 1 [ 9] remains valid with respect to the restricted class
of solutions & which satisfy the condition

P [fl (v(t,£))%at < =] = 1.
0

See, in particular, pg., 161 [9 ]. From Lemmas 1,3, it follows that Mg 5 Mg
0 1
are equivalent to Wiener measure since

w, Lx: fl(Y(t,x))2 dt <=} =1 .
0

Thus, for i = 0,1, we conclude that

sup g(t, Ei(w)) <
0<t<1

int g(t, Ei(m)) >0
0<t<1

sup a(t, Ei(w)) < o
0<t<1

oAy
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Theorem 1. If Eo, El are weak solutions of (&), then

Wyl e

sup | £ (t,0) - £(t,w)| =0 P - a.s.
0<t<1

Proof. On [0,1] x ¢[0,1], define

- d(g °€ )
L(t,0) = |¥(5,E)- Y(t,E)] = | —7;3—1-|
o £(t,6,) - £(¢,€,) . L .
i s(t,Eo) + £(t,8,) (ETE',EET - ml‘y)
’ ’ Then
S » , , .
1 (6) (L{t,0))" < K(w)[(£(t,8;) - £(,E,))7 + (£(t,E;)) [a(t,E,) ~ &(t,€,)1%)
:
] where K(w) > max 1 5 5 1 .
i ‘ inf(g(t,EO)) j_nf(g(t,go)) . inf(g(t,il))
o 0<t<l 0<t<1 0<t<1
‘ For 0 <u <1, we write 1
| M [ Bwee < x| [[[18,@]lott,8y@1-0(t,8, 8 |ap@) | %ar 1
- 0 k4 -— 0 [ffz t ’ 0, ’ l!

u
+ . (£(t,€,))% | fﬁ lo(t,Eo,G)-pét,sl,&)ldP(&)led‘c]

2
|




and because e* is convex, it follows for all LT), t, that

<

-

lo(t,Eg0@) + plt,E .0+ [ © B (g€ ()]

[
=

|0(6,6,,0) + p(t,E )] fot B_(B)L(s,w)as|

Applying Holder's inequality to the last integral term in (8), and bringing

2 ‘. out (ft(L(S,w))zds)l/e, yields
i 0

| (9) fou (L(t,0))%at < K(w) fo“ (fot (L(s,w))gds] « Y(t,w)dt - w a.s.

where
2

N N N t 1/2
V(t,w) = [fA IBt(w)H (p(t,Co,w)+p(t,€l,w)i~(f si(&)ds)/ aP]
Q 5 0

~ - 2
U By @etg Dl

p(t,E ,@)+p(t,E. ,0) t oA 12 2
[ fa ( 0 5 1 ) ( '[0 B (w)ds) ar(w)] .

1 < By showing that ¥(t,w) is an integrable function of t -wa.s., one may then

jterate (9) and conclude that for O <uc<l,

u 2
[ wewPat = 0 w-as.
0

Hence sup IEO (t,w) - El(t,w)l
0<t<1
1

< [ (Lit,w)at = o w - a.s.
0

o PR NIRRT E T Y PPAPI Y A W T i € WO I W e 8 e v
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; and we have established path-wise uniqueness for weak solutions of (4).
To see that Y(t,w) is integrable in t, w- a.s, apply Holder's inequality
to the first term to obtain,
[ @ £,E 0 ALt 12 2
(10) fA 18, ()]} ol Eo,m)+p(t,£1,w)|(f ABras) aPd) ]
( f 2 o 8
< 2, ~ ~ ~
2
t 2,~ ~ "~ -~
S tf 6@as 1ol £y B)r0(t,E,,8)) aP(B)
3 0
] 2
< 2,° ~ A ~
= [ 18w (ots,E, w)ole,E0)aP@)
) 5
(p(t,E ., 0)+p(t,E. ,0)
l 2 ~ s 09 k] 19 -~
sup [ B (w)as]+ ( ) aP(w)
0<t<1 fﬁ fo s 2
Integrating this product over t gives
1 o (0(t,E,@)+0(t,E; 20) .
(11)  sup f,‘[f B (w)as] * ( 5 ) aP(w)
o<t<1 J&@ Jo
* u 2, ~ | A A
f [ f/\ les(w)ll p(t,aogw)*’p(tgglaw) l dp(w) ] at. <® () = 8.8.
o 7@ 5
by Lemmas 2,3.
5 The second term of w(t,m) is handled analogously using Lemmas 1,2,3.
This completes the proof.

o o AT e, e
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Thus, the observations process {yt}, O<t<l, is the (unique) strong solu-

tion satisfying (%) under the restriction that

P(fl Y(t,E)adt <) = 1,
0

Final Remarks.

Let us rewrite equation (2) as

(12) v= (I-N)y , where N is a non-linear operator from C[O,l;uy] into
C[O,l;uv]. Under assumptions (a) and (b) we have shown that an inverse operator

(T + ﬁ) exists such that P - a.s.

(13) y = (I+-§)v .

Moreover, if m, : C[0,1] =+ C[0,1] denotes the truncation operator defined by

t

xs, 0<s<t
(1k) (m.x)(s) =
0 , otherwise )

then
(15) (I+-N)(ﬂtv) =my , that is, the operator (14—ﬁ) is causal.

Our results in this paper suggest the investigation of causal-invertibility
of non~-linear causal operators on abstract Wiener Spaces (in the sense of Gross)
using methods of stochastic integration and martingales. Such an investigation
would also be of importance in the theory of stochastic stability of feedback

systems.

é
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